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Abstract

In this paper, after some recalls about Poisson cohomology, we first study what the general method
is in order to obtain a bi-Hamiltonian formulation of a given Hamiltonian system by means of a de-
formation. Then we show that the bi-Hamiltonian formulation which results from the deformation of
a Poisson structure by means of a suitable non-Noether symmetry cannot explain the complete inte-
grability for a large class of Arnold–Liouville integrable systems; next we prove that the deformation
must be made in this context by a suitable mastersymmetry. At last, we give several examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One can have two approaches concerning relations between bi-Hamiltonian structures
and completely integrable Hamiltonian systems. Firstly, we can have a practical one and
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try to prove the complete integrability of a given Hamiltonian system by means of the
discovery of a suitable bi-Hamiltonian structure. Secondly, we can have a more theoretical
approach by explaining the complete integrability of a well-known completely integrable
Hamiltonian system: one show that a known involutive family of constants of motion (which
gives the integrability) comes from a recursion operator associated with a bi-Hamiltonian
structure. The former should be very interesting but unfortunately it seems utopian. Indeed,
without the knowledge of an involutive family of constants of motion, it appears impossible
(or extremely difficult, at least) to find such a bi-Hamiltonian structure and, with such
knowledge, we are in the situation of the latter point of view! Therefore, in this paper we
are only concerned with this second problem.

So, we consider a completely integrable Hamiltonian system (M, Π, H), whereM is a
smooth manifold,Π a Poisson tensor andH a smooth function onM, with an involutive
family of functionally independent constants of motion (f1, . . . , fn). We examine the ex-
istence of a bi-Hamiltonian structure for it, i.e. the existence of a second Poisson structure
Π ′, compatible with the initial Poisson tensorΠ, and so that the Hamiltonian vector field
XH for Π is also Hamiltonian forΠ ′ (condition which is locally equivalent to the fact
thatΠ ′ is XH-invariant, i.e.XH is a Poisson automorphism). One of us has already stud-
ied such a problem in the context of Arnold–Liouville systems i.e. when the fibers of the
application

F : M −→ R
n, x �→ (f1(x), . . . , fn(x))

are compact sets[1,2], and we know that, in this situation, the existence of such a bi-
Hamiltonian structure is very rare. The compacity of fibers is very constraining and, in
the absence of such a condition, the situation is less rigid. In particular, for non-singular
Hamiltonian, the existence is always locally satisfied.

In this paper we are concerned with the case where a bi-Hamiltonian formulation for
a given completely integrable Hamiltonian system is obtained by a deformation of the
initial Poisson structure. In fact, it is well known from Magri’s works in the 1980s that the
infinitesimal deformationΠ ′ = [Z, Π] of a Poisson structureΠ always verifies [Π, Π ′] = 0
where [, ] is the Schouten–Nijenhuis bracket. So, in the case whereΠ ′ is also Poisson, it
provides a pair of compatible Poisson tensors. Locally, this condition is not constraining
because every compatible Poisson structure is obtained by a deformation of the initial one.
In the situation of an Arnold–Liouville integrable system (fibers are compact) we are in
the model ofM = U × Tn, whereU is an open ball ofRn, Tn then-dimensional torus and
Π the canonical structure

∑n
i=1

∂
∂qi

∧ ∂
∂θi

where (q1, . . . , qn, θ1, . . . , θn) are action-angle
coordinates onM; in this case, ifΠ ′ is a Poisson tensor, compatible withΠ, Π ′ is not
necessarily obtained by a deformation however there are some real constantscij and a field
Z, so that

Π ′ = [Z, Π] +
∑
i<j

cij

∂

∂qi

∧ ∂

∂qj

.

Thus, even in this last situation, we are not far from a deformation.
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In a recent paper[3] in this journal, Chavchanidze studied the notion of non-Noether
symmetry and its link with bi-Hamiltonian systems. Such a symmetry for a Hamiltonian
system (M, Π, H) is (from an infinitesimal point of view) a fieldZ verifying [Z, XH] = 0
(i.e. a symmetry of the Hamiltonian vector fieldXH) and [Z, Π] �= 0 (non-Noether). Under
the condition [[Z, [Z, Π]] , Π] = 0, Chavchanidze shows that the second bivector defines
a Poisson structure onM and – because of the condition of symmetry, this second Poisson
structure isXH-invariant – leading to a non-trivial bi-Hamiltonian system with all its well-
known classical properties, non-trivial because symmetry is non-Noether. Chavchanidze’s
paper is at the origin of the present work.

More precisely, in Section2, we briefly recall some basic facts on Poisson cohomology
because it is the good framework to study deformations of Poisson structures.

In Section3, we make a general study of bi-Hamiltonian systems which are obtained by
a deformation: we characterize the suitable fields and, joined to a cohomological interpreta-
tion, it leads to a synthetic presentation of bi-Hamiltonian systems. With this approach, these
systems appear as a moduli space of solutions of partial differential equations. A new coho-
mology, associated with the Hamiltonian function is introduced, leading to a bidifferential
calculus with the classical Poisson cohomology.

In Section4, we study the case of completely integrable Hamiltonian systems with
compact fibers (Arnold–Liouville context) and show on the one hand that deformations
using non-Noether symmetries are not relevant in this situation for a large class of systems.
As the spectrum of the recursion operator is necessary constant it cannot allow us to find
an interesting family of constants of motion. On the other hand we show that the suitable
fields for interesting deformations must be mastersymmetries.

In the last section, we give several examples to illustrate our purpose with systems
defined onR2n with canonical symplectic form and for systems defined on semi-simple
Lie algebra of compact type endowed with the Kostant–Kirillov–Souriau Poisson structure;
more accurately we deal with the Toda and relativistic Toda lattices and the Euler equation.

2. Poisson compatibility and Poisson cohomology

2.1. Compatible Poisson structures and deformations

Let (M, Π) aPoisson manifold. Fork ∈ N, we noteXk(M) the space of smoothk-vector
fields onM; in particularX0(M) = C∞(M) is the space of smooth functions onM and
X1(M) = X(M) the space of smooth vector fields onM. Let

X∗(M) =
⋃
k∈N
Xk(M).

We can define onX∗(M) a bracket [, ], called theSchouten–Nijenhuis bracket, graded
extension of the Lie bracket onX(M). Recall that, using the Koszul sign convention[7], this
Schouten–Nijenhuis bracket satisfies the following identities for allP, Q, R, respectively,
in Xp(M),Xq(M),Xr(M):

[P, Q] = −(−1)(p−1)(q−1)[Q, P ], (1)
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[P, Q ∧ R] = [P, Q] ∧ R + (−1)(p−1)qQ ∧ [P, R], (2)

(−1)(p−1)(r−1)[P, [Q, R]] + (−1)(q−1)(p−1)[Q, [R, P ]]

+ (−1)(r−1)(q−1)[R, [P, Q]] = 0. (3)

The last one is the so-calledgraded Jacobi identity. In terms of this bracket, the condition
for Π to be Poisson is written [Π, Π] = 0.

Because of thegraded Jacobi identity onX∗(M), if Z is a vector field onM, we have

0 = [Z, [Π, Π]] = 2[[Z, Π], Π]

and so the 2-vector fieldΠ ′ defined byΠ ′ = [Z, Π] verifies [Π, Π ′] = 0.
Recall that two Poisson tensorsΠ0 andΠ1 on M are saidcompatible if every linear

combinationλ0Π0 + λ1Π1 is also Poisson; this fact is clearly equivalent to the condition
[Π0, Π1] = 0. For this reason, we will say that ap-vector fieldP and aq-vector field
Q arecompatible if [ P, Q] = 0. Then, the previous remark aboutΠ ′ = [Z, Π] leads to
the conclusion that theinfinitesimal deformation Π ′ of the Poisson tensorΠ is always
compatible withΠ. In particular, ifΠ ′ is a Poisson tensor, we obtain onM two compatible
Poisson tensors. So, we define the following definition.

Definition 2.1. If Π is a Poisson tensor andZ a vector field so thatΠ ′ = [Z, Π] is also
Poisson, thenΠ ′ is said of deformation type and (Π, Π ′) is called a compatible Poisson
pair of deformation type.

However, in general,Π ′ = [Z, Π] is not Poisson and we will look at this problem in
Section3.

2.2. Poisson cohomology

Let (M, Π) a Poisson manifold. Consider fork ∈ N, the application

dk
Π : Xk(M) −→ Xk+1(M), � �→ [Π, �].

We have for all integerk, the relationdk+1
Π ◦ dk

Π = 0 and so, we can define the following
cochains complex:

X0(M)
d0
Π→X1(M)

d1
Π→X2(M)

d2
Π→X3(M) −→ · · · (4)

and the cohomology spaces

Hk
Π (M) = Kerdk

Π/Im dk−1
Π (5)

with the convention Imd−1
Π = {0}. This cohomologyH∗

Π (M) is called thePoisson coho-
mology and was introduced by Lichnerowicz.

Among these cohomological spaces, the most interesting for our study is the second
oneH2

Π (M), because, if it is trivial, the only 2-tensors compatible withΠ are obtained
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by infinitesimal deformations ofΠ, in particular, all compatible Poisson structures are of
deformation type.

In general, the calculation of the Poisson cohomology is very difficult; for some results
in this area, one can report to[10,11]and[15]. Nevertheless, ifΠ is non-degenerate (and
so M is symplectic), the Poisson cohomology ofM is isomorphic to the De-Rham one.
For a closed (i.e. compact boundaryless) symplectic manifold, it is impossible to have
H2

DR(M) = {0} and soH2
Π (M) �= {0}; however, it is true for all local study because we can

suppose that we are on some open ball ofR
2n endowed with the canonical symplectic form

ω = ∑
dqi ∧ dpi. Thus, in this case, all Poisson structures compatible with the canonical

oneΠω, are necessarily obtained by an infinitesimal deformation ofΠω.
Another situation where the second Poisson cohomological space is trivial is provided by

semi-simple Lie algebras of compact type. Indeed, ifG is the Lie algebra of a compact Lie
group andΠ the Lie–Poisson structure ofG∗, also known as theKostant–Kirillov–Souriau
Poisson structure and defined forf, g ∈ C∞(G∗) andα ∈ G∗ by the bracket

{f, g}Π (α) = 〈α, [df (α), dg(α)]〉, (6)

we have for all integerk (see[15, p. 69]),

Hk
Π (G∗) = Hk(G) ⊗ {Casimir functions of (G∗, Π)},

whereHk(G) is the cohomology of the Lie algebraG. In particular, by classical results on this
last cohomology, ifG is a semi-simple Lie algebra of compact type, we haveH2(G) = {0}
and soH2

Π (G∗) = {0}.

3. Bi-Hamiltonian systems and Poisson–Hamilton cohomology

3.1. The Yang–Baxter–Poisson equation

A deformed tensorΠ ′ = [Z, Π] is Poisson if, and only if, [Π ′, Π ′] = 0, i.e.
[[Z, Π], Π ′] = 0; this condition is equivalent – by the graded Jacobi identity and the com-
patibility of Π andΠ ′ – to the equation

[[Z, [Z, Π]] , Π] = 0. (7)

So we can state the following proposition.

Proposition 3.1. Let (M, Π) a Poisson manifold and Z a vector field satisfying the con-
dition [[Z, [Z, Π]] , Π] = 0. Then (Π, Π ′ := [Z, Π]) defines a compatible Poisson pair of
deformation type on M.

Remark 3.2.

(a) As we already said inSection 1, the relation(7) is the condition assumed by
Chavchanidze[3] on non-Noether symmetries to get his results.
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(b) In his paper (cf. loc. cit), Chavchanidze compared Eq.(7) to the classical Yang–Baxter
Equation. For this reason, we suggest to callYang–Baxter–Poisson fields, solutions of
Eq.(7).

(c) Eq.(7) is in particular satisfied in the special case where

[Z, [Z, Π]] = 0. (8)

Such a field will be called aspecial Yang–Baxter–Poisson field.

The previous remarks lead to try to find Yang–Baxter–Poisson fields or special Yang–
Baxter–Poisson fields i.e. solutions of Eqs.(7) and (8), that we shall, respectively, name the
Yang–Baxter–Poisson Equation (shortly referred as (YBPE)) and the special Yang–Baxter–
Poisson equation (shortly referred as (SYBPE)), namely

[[Z, [Z, Π]] , Π] = 0 (YBPE)

and

[Z, [Z, Π]] = 0 (SYBPE).

Let us begin with a remark; on a surface (i.e. a 2-manifold) all 2-vector fields are Poisson.
But, if M is a 2n-dimensional symplectic manifold, by Darboux theorem,M is locally a
product ofn symplectic surfaces and so all fields onM which are adapted to this local
decomposition are solutions of (YBPE). In other words, if (q1, p1, q2, p2, . . . , qn, pn) are
local Darboux coordinates on an open setU, fields of type

Z =
n∑

i=1

fi(qi, pi)
∂

∂qi

+ gi(qi, pi)
∂

∂pi

are solutions of (YBPE) onU. For such a fieldZ, the compatible deformed Poisson structure
Π ′ = [Z, Π] obtained onU is written as

Π ′ = [Z, Π] =

 n∑

i=1

fi(qi, pi)
∂

∂qi

+ gi(qi, pi)
∂

∂pi

,

n∑
j=1

∂

∂qj

∧ ∂

∂pj




=
n∑

i,j=1

[
fi

∂

∂qi

+ gi

∂

∂pi

,
∂

∂qj

]
∧ ∂

∂pj

+ ∂

∂qj

∧
[
fi

∂

∂qi

+ gi

∂

∂pi

,
∂

∂pj

]

= −
n∑

i=1

(
∂fi

∂qi

+ ∂gi

∂pi

)
∂

∂qi

∧ ∂

∂pi

. (9)

Another remark is the following one: let us search solutions of (SYBPE)Z = fY

where Y is an infinitesimal automorphism ofΠ. In this case, because [Y, Π] = 0, we
have—if we noteXf the Hamiltonian vector field [Π, f ] associated with Hamiltonian
functionf
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0 = [fY, [fY, Π]] = −[fY, [Π, f ] ∧ Y ] = −f [Y, Xf ] ∧ Y + (Y · f )Xf ∧ Y

= (−fXY ·f + (Y · f )Xf ) ∧ Y. (10)

Moreover, the deformed Poisson structure is given by

Π ′ = −Xf ∧ Y (11)

and so has a rank 0 or 2. Two particular cases appear when we look at Eq.(10), namely
Y · f = 0 andY · f = f . Indeed, in this two cases we obtain solutions of (SYBPE). For
example, to find Poisson structures compatible with the canonical oneΠ = ∑n

i=1
∂

∂qi
∧ ∂

∂pi

on R2n, it suffices to choose a Hamiltonian vector fieldY, for instanceY = Xq1 = ∂
∂p1

,
a functionf which verifiesY · f = 0 or Y · f = f , i.e. with the given example,f =
f (q1, q2, p2, . . . , qn, pn) in the first case andf = ep1g(q1, q2, p2, . . . , qn, pn) in the sec-
ond one, and to deformΠ by means of the fieldZ = fY according to the formula(11).
Now, if we haven independent automorphismsY1, . . . , Yn of Π andn functionally inde-
pendent first integralsf1, . . . , fn for the fieldsY1, . . . , Yn, with Y1, . . . , Yn, Xf1, . . . , Xfn

independent, then the deformed structureΠ ′ = [Z, Π] whereZ = f1Y1 + · · · + fnYn, is
a non-degenerate Poisson structure, compatible withΠ. For example, we are in such
a situation when we have a completely integrable Hamiltonian system: by Jacobi–Lie–
Caratheodory theorem[9], if (f1, . . . , fn) is an involutive family, there are locally, functions
g1, . . . , gn such thatf1, . . . , fn, g1, . . . , gn are canonical coordinates and so we can take
Y1 = Xg2, . . . , Yn−1 = Xgn, Yn = Xg1.

3.2. The Yang–Baxter–Poisson moduli space

Recall first the classical definition of abi-Hamiltonian system.

Definition 3.3. A Hamiltonian system (M, Π, H) is said to admit a bi-Hamiltonian formu-
lation if there is a bivectorΠ ′ satisfying the three following conditions:

(a) [Π ′, Π ′] = 0 (Poisson condition)
(b) [Π, Π ′] = 0 (compatibility condition)
(c) [[H, Π], Π ′] = 0 (bi-Hamiltonian condition)

In this case we will call (M, Π, Π ′, H) a bi-Hamiltonian system.

Remark 3.4. The condition (c) in the previous definition says that the Hamiltonian vector
field XH := [H, Π] is an infinitesimal automorphism ofΠ ′; among these automorphisms,
we find Hamiltonian vector fields relatively toΠ ′, and locally all automorphisms are such
Hamiltonian fields, i.e. [H, Π] = [H ′, Π ′] for some functionH ′. This fact justifies the word
“bi-Hamiltonian” used in this definition.

We can also remark that using the graded Jacobi identity for Schouten–Nijenhuis bracket
and the condition (b), the condition (c) gives immediately that the Hamiltonian vector field
[H, Π ′] is an infinitesimal automorphism ofΠ.
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Definition 3.5. A bi-Hamiltonian formulation for the system (M, Π, H) will be called of
deformation type ifΠ ′ is obtained by deformation ofΠ i.e.Π ′ = [Z, Π] for a suitable field
Z.

Proposition 3.6. A Hamiltonian system (M, Π, H) admits a bi-Hamiltonian formulation of
deformation type if, and only if, there is a vector field Z ∈ X(M) satisfying the two following
conditions:

(i) [[ Z, [Z, Π]] , Π] = 0 (YBPE)
(ii) [[ Z, [H, Π]] , Π] = 0, i.e. [Z, XH] is an infinitesimal automorphism of Π. We refer to

this condition as (PHE) (for Poisson–Hamilton equation).

In this case the second Poisson structure Π ′ of Definition 3.3 is given by Π ′ = [Z, Π].

Proof. We have already seen that the condition (i), i.e. the (YBPE) is a necessary and
sufficient condition to haveΠ ′ := [Z, Π] Poisson. The condition of compatibility is in the
case of a deformation automatically satisfied. Now, forΠ ′ := [Z, Π], the condition (c) of
Definition 3.3is written [XH, [Z, Π]] = 0 and so using the graded Jacobi identity for the
Schouten–Nijenhuis bracket and the fact thatXH is an infinitesimal automorphism ofΠ,
we see immediately that it is equivalent to the condition (ii).�

Remark 3.7. In [3], Chavchanidze defines anon-Noether symmetry as a fieldZ so that
[Z, XH] = 0 and [Z, Π] �= 0. Such a field is a trivial solution of (PHE). We will reconsider
largely this concept in Section4.

It is so natural to define, for a Hamiltonian system (M, Π, H), the following set:

S = {Z ∈ X1(M), [[Z, [Z, Π]] , Π] = 0 and [[Z, XH], Π] = 0}.

It is the set of solutions of the Yang–Baxter–Poisson and Poisson–Hamilton equations and
can be called the space of bi-Hamiltonian systems of deformation type associated with
(M, Π, H).

Proposition 3.8. If Z is a vector field which satisfies the two equations

[[Z, [Z, Π]] , Π] = 0 and [[Z, XH], Π] = 0

then, for all infinitesimal automorphism Y of Π, the field Z + Y is again a solution of these
two equations.

Proof. For the first one, we have,

[[Z + Y, [Z + Y, Π]] , Π] = [[Z + Y, [Z, Π]] , Π] = [[Y, Π ′], Π]

= [Y, [Π ′, Π]] + [Π ′, [Π, Y ]] = 0
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the two last equalities resulting, respectively, from the graded Jacobi identity, the compat-
ibility of Π with the deformed tensorΠ ′ = [Z, Π] and the fact thatY is an infinitesimal
automorphism ofΠ.

For the second one, it results from the classical fact that [Y, XH] is a Hamiltonian vector
field and so is aΠ-automorphism, precisely [Y, XH] = XY ·H . �

Obviously the relation∼ defined onX1(M) by

∀ Z, Z′ ∈ X1(M), Z ∼ Z′ ⇔ [Z − Z′, Π] = 0

is an equivalence relation and because of the previous proposition, ifZ ∈ S, all field Z′
equivalent toZ is again inS which it allows to consider the well-defined spaceM = S/∼
that we will call theYang–Baxter–Poisson moduli space.

3.3. Poisson–Hamilton equation and cohomology

In previous section we have seen the classical Poisson cohomology, which is the good
theoretical framework to study deformations of Poisson structures. Now, we want to intro-
duce a new cohomology which is adapted to the bi-Hamiltonian systems of deformation type
and more precisely to the condition (ii) ofProposition 3.6This condition [[Z, XH], Π] =
0 has already been called thePoisson–Hamilton equation, shortly referred as
(PHE).

Let for k ∈ N and (M, Π, H) a Hamiltonian system:

δk
Π : Xk(M) −→ Xk+1(M), � �→ [Π, [XH, �]] . (12)

Because of the graded Jacobi identity for the Schouten–Nijenhuis bracket and theXH-
invariance ofΠ, we can deduce the following easy lemma.

Lemma 3.9. For all k ∈ N, for all � ∈ Xk(M), we have

δk
Π (�) = dk

Π [XH, �] = [XH, dk
Π�],

where dk
Π indicates the cobord operator of the Poisson cohomology associated with Π.

Using this lemma, we obtain immediately that for allk ∈ N,

δk+1
Π ◦ δk

Π = 0

and so, we obtain a new cohomology associated with the cochains complex

X0(M)
δ0
Π→X1(M)

δ1
Π→X2(M)

δ2
Π→X3(M) −→ · · ·

that we will noteH∗
Π,H (M) and call thePoisson–Hamilton cohomology. In terms of this

cohomology, the space of solutions of the Poisson–Hamilton equation (PHE) is Kerδ1
Π . But
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an elementY of Im δ0
Π satisfies for some functionf ∈ C∞(M),

Y = [Π, [XH, f ]] = X{H,f },

thus is Hamiltonian, and so leads to a trivial deformation ofΠ. It results from these ob-
servations that the space of “interesting” solutions of (PHE) isH1

Π,H (M). Obviously this
cohomology depends strongly on the functionH. In the particular case where there is a
non-Noether symmetryZ of XH, the class of this symmetry defines a non-trivial element of
H1

Π,H (M).
We can also remark, using the previous lemma, that the two cobord operatorsdΠ and

δΠ satisfy the following identities:

dΠ ◦ δΠ = δΠ ◦ dΠ = 0. (13)

In particular,

X0(M)
d0
Π

,δ0
Π→ X1(M)

d1
Π

,δ1
Π→ X2(M)

d2
Π

,δ2
Π→ X3(M) −→ · · · (14)

defines a bicomplex[4,5], i.e. we have, with simplified notations:

dΠ ◦ dΠ = 0, δΠ ◦ δΠ = 0, dΠδΠ + δΠdΠ = 0.

It is important to note that, the cobord operator for Poisson–Hamilton cohomology is not
a differential operator of order one. So, we are only in an algebraic situation of bicomplex
and there is no Frölicher operator relying the two cobord operators of the bicomplex.

4. Deformations and action-angle coordinates

4.1. Arnold–Liouville systems

Let (M, Π, H) a Hamiltonian system whereΠ has a maximal rank and so is associated
with a symplectic formω. This system is said completely integrable in the sense of Arnold–
Liouville – or anArnold–Liouville system – if there is an involutive family of functionally
independent constants of motionf1, . . . , fn, wheren = dimM/2, so that the fibers of the
application

F : M −→ R
n, x �→ (f1(x), . . . , fn(x))

are compact sets. In this situation we know that, ifT is a connected component of a fiber,
thenT is an-dimensional torus; moreover, there is a tubular neighbourhoodΩ of T in M and
a Poisson isomorphism betweenΩ andU × Tn whereU is an open set ofRn andU × Tn

is endowed with the canonical Poisson structureΠcan = ∑n
i=1

∂
∂qi

∧ ∂
∂θi

, where we note
q1, . . . , qn, θ1, . . . , θn coordinates on the productU × Tn. These coordinates are called
action-angle coordinates and the functionsH andf1, . . . , fn depend only onq1, . . . , qn

(see for example[9]). These classical results show that the model of Arnold–Liouville
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integrable Hamiltonian system around a torus is (U × Tn, Πcan, H(q)); we say that the
Hamiltonian functionH is non-degenerate if its Hessian matrix has a maximal rank onU.
This generic condition implies that, the only first integrals ofXH are basic functions for
the fibrationU × Tn −→ U given by the first projection, i.e. are functions ofq1, . . . , qn.
In the following, when we will sayArnold–Liouville system, we will refer to the system
(U × Tn, Πcan, H(q)).

The Poisson cohomology of such a system (of its manifold) verifies

H2
Π (U × Tn) � H2

DR(U × Tn) � (H0
DR(Tn) ⊗ H2

DR(U)) ⊕ (H1
DR(Tn) ⊗ H1

DR(U))

⊕ (H2
DR(Tn) ⊗ H0

DR(U)) � H2
DR(Tn)

because of the isomorphism between the Poisson and De-Rham cohomologies in the sym-
plectic case, and the triviality of the De-Rham cohomology of an open ball ofR

n. Now,
because (dθi ∧ dθj)i<j is a basis forH2

DR(Tn), we get by symplectic duality the basis(
∂

∂qi
∧ ∂

∂qj

)
i<j

of H2
Π (U × Tn). So, ifΠ ′ is a 2-tensor compatible withΠ, there are a field

Z and some real constantscij so that

Π ′ = [Z, Π] +
∑
i<j

cij

∂

∂qi

∧ ∂

∂qj

.

4.2. Deformation with a non-Noether symmetry

In a general way, a symmetry of a dynamical system ˙x = X(x) is a vector fieldZ sat-
isfying [Z, X] = 0. In the Hamiltonian framework, if (M, Π) is a Poisson manifold and
H a smooth function onM giving a Hamiltonian vector fieldXH, we have already seen
in previous section that Chavchanidze[3] defined a non-Noether symmetry as a field
Z verifying conditions [Z, XH] = 0 and [Z, Π] �= 0. In this situation, he proved several
results – in the case whereΠ has maximal rank – about the existence of an involu-
tive family of first integrals forXH, about the existence of a bi-Hamiltonian formula-
tion and the existence of a Frölicher–Nijenhuis operator and so on. All these results are
clear in the light of the previous section and classical results on bi-Hamiltonian systems
[8].

As we have already seen, the infinitesimal deformation of a Poisson tensorΠ by the
means of a fieldZ, namelyΠ ′ = [Z, Π], verifies [Π, Π ′] = 0 and so, in the case whereΠ ′
is Poisson, we obtain a pair of compatible Poisson structures. Moreover, ifZ is a symmetry,
it is clear thatΠ ′ is XH-invariant and the given Hamiltonian system has a bi-Hamiltonian
formulation. Thus, in the case whereΠ has maximal rank, the (1, 1)-tensor field relying
the two structures can be used to obtain an involutive family of constants of motion. In
this case, perhaps we will obtain the complete integrability of the Hamiltonian system
(we have already said in the introduction the double point of view about it: we can try to
prove complete integrability with this method or more realistic, we can try to see if known
Poisson-commuting first integrals can appear as eigenvalues of the associated recursion
operator).
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Now we want to prove that the notion of non-Noether symmetry is not relevant for a
large class of Arnold–Liouville systems because by its means, the involutive family of first
integrals mentioned above contains only constants functions.

In the context of action-angle coordinates, we have the following result[1,2].

Lemma 4.1. For a non-degenerate Arnold–Liouville system, a field Z is a symmetry of XH,
i.e. [Z, XH] = 0 if, and only if, Z is written as

Z =
n∑

i=1

ai(q)
∂

∂θi

.

We deduce the following proposition.

Proposition 4.2. For a non-degenerate Arnold–Liouville system, the deformation of the
Poisson structure by means of a (non-Noether) symmetry gives a bi-Hamiltonian structure
whose recursion operator has a trivial spectrum.

Proof. Indeed, it results from the previous lemma that the bivector [Z, Π] has the form

[Z, Π] =

 n∑

i=1

ai(q)
∂

∂θi

,

n∑
j=1

∂

∂qj

∧ ∂

∂θj


 = −

n∑
i,j=1

∂ai

∂qj

∂

∂θi

∧ ∂

∂θj

and so, if [Z, Π] is a Poisson structure, the (1, 1)-tensor field relying the two compatible
Poisson structures has a trivial spectrum.�

Consequently, if a Hamiltonian system is completely integrable in the sense of Arnold–
Liouville, with a non-degenerate Hamiltonian, it is impossible to prove its integrability by
means of a bi-Hamiltonian formulation based upon a deformation of the initial Poisson
structure by a non-Noether symmetry. Thus, deformations by non-Noether symmetries
cannot bring any explanation to the Arnold–Liouville integrability (at least whenH is
non-degenerate).

4.3. Mastersymmetries and deformations

Recall that a mastersymmetry of a Hamiltonian system is a fieldZ satisfying
[[Z, XH], XH] = 0 and [Z, XH] �= 0.

In [14], Smirnov showed (by applyingLemma 4.1to [Z, XH]) that, if (M = U ×
T

n, Π, H) is non-degenerate, the condition [[Z, XH], XH] = 0 is satisfied if, and only if,
the fieldZ is written as

Z =
n∑

i=1

ai(q)
∂

∂θi

+
n∑

i=1

bi(q)
∂

∂qi

(15)

and so characterized mastersymmetries in this situation. Using this fact and some results
obtained in[1,2] we can prove the following theorem.



1382 H. Boualem, R. Brouzet / Journal of Geometry and Physics 56 (2006) 1370–1386

Theorem 4.3. Let (M = U × Tn, Π, H) be a non-degenerate Arnold–Liouville system. If
Z is a field and Π ′ = [Z, Π] is a (compatible) XH-invariant Poisson structure (and so
provides a bi-Hamiltonian formulation to the system) then, modulo a Hamiltonian vector
field, Z is written as

Z =
n∑

i=1

ai(q)
∂

∂θi

+
n∑

i=1

bi(q)
∂

∂qi

.

In this case,Z must be a mastersymmetry if the spectrum of the associated recursion operator
has a non-trivial spectrum.

Proof. Let

Z =
n∑

i=1

ai(q, θ)
∂

∂θi

+
n∑

i=1

bi(q, θ)
∂

∂qi

be a general field. We want to prove that ifΠ ′ = [Z, Π] is a XH-invariant compatible
Poisson structure then, modulo an infinitesimal automorphism ofΠ, the coefficientsai and
bi depend only onq. A straightforward calculation gives

Π ′ = −
∑
i<j

(
∂ai

∂qj

− ∂aj

∂qi

)
∂

∂θi

∧ ∂

∂θj

−
∑
i<j

(
∂bj

∂θi

− ∂bi

∂θj

)
∂

∂qi

∧ ∂

∂qj

−
∑
i,j

(
∂bi

∂qj

+ ∂aj

∂θi

)
∂

∂qi

∧ ∂

∂θj

. (16)

For some (great) constantk, we are sure thatΠk := kΠ + Π ′ has a maximal rank and
so defines a symplectic formωk. Moreover, we have also [Πk, Π] = 0, soΠk andΠ are
compatible. From a symplectic point of view, we have two compatible symplectic forms
ωcan andωk, in the sense where the (1, 1)-tensor fieldJ defined by the relation available
for all vector fieldsX andY, ωk(X, Y ) = ω(JX, Y ), has a vanishing Nijenhuis torsion and
of course,ωk is XH-invariant. So, according to a study done in the context of symplectic
forms [1,2], we know that, in this situation, the coefficients ofωk are functions of only
coordinatesq1, . . . , qn and that the fibrationU × Tn −→ U is Lagrangian, i.e.ωk has no
term in dθi ∧ dθj. It results thatΠk and alsoΠ ′ has coefficients which depend only on
coordinatesq and has no term in∂

∂qi
∧ ∂

∂qj
. So we have,

∀ i < j,
∂ai

∂qj

− ∂aj

∂qi

= fij(q), (17)

∀ i < j,
∂bj

∂θi

− ∂bi

∂θj

= 0, (18)

∀ i, j,
∂bi

∂qj

+ ∂aj

∂θi

= gij(q). (19)
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The second of these relations means that for each fixedq, the 1-formα := ∑
bi dθi is closed

and thus, according to the De-Rham cohomology of the torus, there is a functionF andn
functionsci(q) so that

α = ∂θF +
∑

ci(q) dθi,

where∂θF is the differential ofF as a function ofθ (q is constant). Thus we have for alli,

bi(q, θ) = ∂F

∂θi

+ ci(q). (20)

Now consider the fieldZ′ = Z + XF whose coefficients are, with obvious notations,

a′
i = ai + ∂F

∂qi

, b′
i = bi − ∂F

∂θi

.

We have,

∂a′
i

∂θj

= ∂ai

∂θj

+ ∂2F

∂qi∂θj

= gji(q) − ∂bj

∂qi

+ ∂2F

∂qi∂θj

= gji(q) − ∂cj

∂qi

(q).

Thus on each torus, the functionsa′
i are affine functions, so are constants and finallya′

i =
a′
i(q). We have also,

∂b′
i

∂θj

= ∂bi

∂θj

− ∂2F

∂θi∂θj

= 0

so b′
i = b′

i(q). It results from these calculations thatZ′ has the announced form. Now,
according toProposition 4.2, if the spectrum of the recursion operator associated with this
bi-Hamiltonian system is interesting, in particular non-trivial,Z′ cannot be a symmetry but
a mastersymmetry. �

Remark 4.4. The modification of a given fieldZ by a Hamiltonian does not change
the deformed structureΠ ′ and the associated recursion operator. So, the previous re-
sult joined to the initial remarks about the Poisson cohomology ofU × Tn show that,
in the case of a non-degenerate Arnold–Liouville system, the only bi-Hamiltonian struc-
tures – with a non-trivial spectrum – are obtained by deformation of the initial Poisson
tensor by means of a mastersymmetry. So, only mastersymmetries are interesting in the
Arnold–Liouville context; this fact can be brought closer to that of Smirnov[14] who
showed that for an Arnold–Liouville system the only generatorsZ of degreek, in the sense
where

Lk
XH

Z = 0 and Lk−1
XH

Z �= 0

are symmetries and mastersymmetries (i.e.k = 1 or 2). These two results show the essential
role of mastersymmetries.
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5. Some examples of deformation

5.1. The Toda lattice

The Toda lattice is a system ofn particles on a line; ifq1, . . . , qn are positions of these
particles andp1 = q̇1, . . . , pn = q̇n, it is a Hamiltonian system on the phase spaceR2n with
coordinates (q1, . . . , qn, p1, . . . , pn) endowed with the canonical Poisson structure

Π =
n∑

i=1

∂

∂qi

∧ ∂

∂pi

and the Hamiltonian functionH associated with the system is

H = 1

2

n∑
i=1

p2
i +

n−1∑
i=1

e2(qi−qi+1).

This system appears as a bi-Hamiltonian system with the following second Poisson
structure[6]:

Π ′ =
n−1∑
i=1

2 e2(qi−qi+1) ∂

∂pi+1
∧ ∂

∂pi

+
n∑

i=1

pi

∂

∂qi

∧ ∂

∂pi

+ 1

2

∑
i<j

∂

∂qj

∧ ∂

∂qi

.

We know from the previous sections that the bivectorΠ ′ is necessarily a deformation of
Π, i.e.Π ′ = [Z, Π] for a suitable fieldZ which is uniquely defined modulo a Hamiltonian
field. We can take forZ the following:

Z =
n−1∑
i=1

e2(qi−qi+1) ∂

∂pi

+
n∑

i=1

1

2
p2

i

∂

∂pi

+ 1

2

∑
i<j

pi

∂

∂qj

.

In order to obtain this fieldZ, it suffices to use symplectic duality provided byΠ and work
with differential forms: a suitable fieldZ appears in this new context as a 1-formα verifying
dα = ω′, whereω′ is the 2-form corresponding toΠ by means of this duality.

5.2. The relativistic Toda lattice

For the relativistic Toda lattice, we have again

Π =
n∑

i=1

∂

∂qi

∧ ∂

∂pi

,

but the Hamiltonian functionH associated with the system is now

H =
n∑

i=1

eqi−qi+1+pi + epi .
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Here a bi-Hamiltonian formulation is provided[13] by the Poisson bivector

Π ′ =
n−1∑
i=1

e−pi
∂

∂qi

∧

 ∂

∂pi

+
n∑

j=i+1

∂

∂qj


 + Π ′′,

where

Π ′′ =
n−1∑
i=1

e(qi−qi+1−pi+1)


(

∂

∂pi

+ ∂

∂qi+1

)
∧


 ∂

∂pi+1
+

n∑
j=i+2

∂

∂qj







− e(qi−qi+1−pi+1)


 ∂

∂pi+1
∧

n∑
j=i+2

∂

∂qj


 .

We can give the followingZ satisfyingΠ ′ = [Z, Π],

Z =
n−1∑
i=1

e−pi


 ∂

∂pi

−
n∑

j=i+1

∂

∂qj


 −

n−1∑
i=1

e(qi−qi+1−pi+1)


 ∂

∂pi+1
+

n∑
j=i+2

∂

∂qj


 .

5.3. The Euler equation

Using a symmetric matrixA, we can obtain on the Lie algebra so(n), a new Lie bracket
given by [M, N]A := MAN − NAM. Such a bracket defines a Poisson structure on the dual
space so(n)∗ of so(n). By means of the symmetric bilinear form〈, 〉 defined by〈M, N〉 :=
Tr(MN), we can identify the Lie algebra so(n) with its dual space so(n)∗. Then, we get
a new Poisson bracket{ }A on so(n). In the case whereA = In, this Poisson structure is
the Kirillov–Kostant–Souriau Poisson structure; let{, } the corresponding bracket. In[12],
the authors affirm that the Poisson bracket−2{, }A is obtained by deformation from{, }.
Because forn ≥ 3, so(n) is a semi-simple Lie algebra of compact type, this result is not
surprising according to the end of Section2.2. Moreover in[12], the authors give the field
Z(M) := AM + MA as a suitable field allowing this deformation. We now prove this fact.

Indeed, the flow of the fieldZ is given byφt(M) = etAM etA. ForP ∈ so(n), let us define
on so(n) the real functionfP ,

fP (M) := Tr(MP).

If P, Q andM belong to so(n), we have

{fP ◦ φt, fQ ◦ φt}(φ−t(M)) = −Tr(e−tAM e−tA[etAP etA, etAQ etA]).

After some simplifications, we get,

{fP ◦ φt, fQ ◦ φt}(φ−t(M)) = −Tr(MP e2tAQ − MQ e2tAP).
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By differentiation att = 0 of this last expression, we obtain

d

dt

∣∣∣∣
t=0

{fP ◦ φt, fQ ◦ φt}(φ−t(M)) = −2Tr(MPAQ − MQAP) = −2{fP, fQ}A(M)

and so the announced result.
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	Bi-Hamiltonian systems of deformation type
	Introduction
	Poisson compatibility and Poisson cohomology
	Compatible Poisson structures and deformations
	Poisson cohomology

	Bi-Hamiltonian systems and Poisson--Hamilton cohomology
	The Yang--Baxter--Poisson equation
	The Yang--Baxter--Poisson moduli space
	Poisson--Hamilton equation and cohomology

	Deformations and action-angle coordinates
	Arnold--Liouville systems
	Deformation with a non-Noether symmetry
	Mastersymmetries and deformations

	Some examples of deformation
	The Toda lattice
	The relativistic Toda lattice
	The Euler equation

	Acknowledgement
	References


