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Abstract

In this paper, after some recalls about Poisson cohomology, we first study what the general method
is in order to obtain a bi-Hamiltonian formulation of a given Hamiltonian system by means of a de-
formation. Then we show that the bi-Hamiltonian formulation which results from the deformation of
a Poisson structure by means of a suitable non-Noether symmetry cannot explain the complete inte-
grability for a large class of Arnold—Liouville integrable systems; next we prove that the deformation
must be made in this context by a suitable mastersymmetry. At last, we give several examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One can have two approaches concerning relations between bi-Hamiltonian structures
and completely integrable Hamiltonian systems. Firstly, we can have a practical one and
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try to prove the complete integrability of a given Hamiltonian system by means of the
discovery of a suitable bi-Hamiltonian structure. Secondly, we can have a more theoretical
approach by explaining the complete integrability of a well-known completely integrable
Hamiltonian system: one show that a known involutive family of constants of motion (which
gives the integrability) comes from a recursion operator associated with a bi-Hamiltonian
structure. The former should be very interesting but unfortunately it seems utopian. Indeed,
without the knowledge of an involutive family of constants of motion, it appears impossible
(or extremely difficult, at least) to find such a bi-Hamiltonian structure and, with such
knowledge, we are in the situation of the latter point of view! Therefore, in this paper we
are only concerned with this second problem.

So, we consider a completely integrable Hamiltonian systefin{, H), whereM is a
smooth manifold/7 a Poisson tensor arfd a smooth function oM, with an involutive
family of functionally independent constants of motiofy (. . ., f,). We examine the ex-
istence of a bi-Hamiltonian structure for it, i.e. the existence of a second Poisson structure
IT’, compatible with the initial Poisson tenshf, and so that the Hamiltonian vector field
Xy for IT is also Hamiltonian forlT’ (condition which is locally equivalent to the fact
that IT" is Xy-invariant, i.e.Xy is a Poisson automorphism). One of us has already stud-
ied such a problem in the context of Arnold—Liouville systems i.e. when the fibers of the
application

F:M—R" x— (fa(x),..., fn(x)

are compact setfl,2], and we know that, in this situation, the existence of such a bi-
Hamiltonian structure is very rare. The compacity of fibers is very constraining and, in
the absence of such a condition, the situation is less rigid. In particular, for non-singular
Hamiltonian, the existence is always locally satisfied.

In this paper we are concerned with the case where a bi-Hamiltonian formulation for
a given completely integrable Hamiltonian system is obtained by a deformation of the
initial Poisson structure. In fact, it is well known from Magri's works in the 1980s that the
infinitesimal deformatiodl’ = [Z, IT] of a Poisson structurd always verifies[1, IT'] =0
where [] is the Schouten—Nijenhuis bracket. So, in the case whgris also Poisson, it
provides a pair of compatible Poisson tensors. Locally, this condition is not constraining
because every compatible Poisson structure is obtained by a deformation of the initial one.
In the situation of an Arnold-Liouville integrable system (fibers are compact) we are in
the model ofM = U x T", whereU is an open ball oR", T" then-dimensional torus and
IT the canonical Structur®_; 57~ A - where @1, ..., g, 01, ..., 6,) are action-angle
coordinates orM; in this case, iflT’ is a Poisson tensor, compatible wifh, T’ is not
necessarily obtained by a deformation however there are some real congtantsa field
Z, so that

0

d
o=z, I+ ci— 2.
Z”aqz' aq j

i<j

Thus, even in this last situation, we are not far from a deformation.
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In a recent pap€f3] in this journal, Chavchanidze studied the notion of non-Noether
symmetry and its link with bi-Hamiltonian systems. Such a symmetry for a Hamiltonian
system M, I1, H) is (from an infinitesimal point of view) a field verifying [Z, Xy4] =0
(i.e. a symmetry of the Hamiltonian vector fietqy) and [Z, IT] # 0 (non-Noether). Under
the condition [i, [Z, IT]], IT] = 0, Chavchanidze shows that the second bivector defines
a Poisson structure gt and — because of the condition of symmetry, this second Poisson
structure isXy-invariant — leading to a non-trivial bi-Hamiltonian system with all its well-
known classical properties, non-trivial because symmetry is non-Noether. Chavchanidze’s
paper is at the origin of the present work.

More precisely, in Sectiog, we briefly recall some basic facts on Poisson cohomology
because it is the good framework to study deformations of Poisson structures.

In Section3, we make a general study of bi-Hamiltonian systems which are obtained by
a deformation: we characterize the suitable fields and, joined to a cohomological interpreta-
tion, it leads to a synthetic presentation of bi-Hamiltonian systems. With this approach, these
systems appear as a moduli space of solutions of partial differential equations. A new coho-
mology, associated with the Hamiltonian function is introduced, leading to a bidifferential
calculus with the classical Poisson cohomology.

In Section4, we study the case of completely integrable Hamiltonian systems with
compact fibers (Arnold—Liouville context) and show on the one hand that deformations
using non-Noether symmetries are not relevant in this situation for a large class of systems.
As the spectrum of the recursion operator is necessary constant it cannot allow us to find
an interesting family of constants of motion. On the other hand we show that the suitable
fields for interesting deformations must be mastersymmetries.

In the last section, we give several examples to illustrate our purpose with systems
defined onR?" with canonical symplectic form and for systems defined on semi-simple
Lie algebra of compact type endowed with the Kostant—Kirillov—Souriau Poisson structure;
more accurately we deal with the Toda and relativistic Toda lattices and the Euler equation.

2. Poisson compatibility and Poisson cohomology
2.1. Compatible Poisson structures and deformations

Let (M, IT) aPoisson manifold. Fork € N, we noteXx¥ (M) the space of smoothvector
fields onM; in particular xO(M) = C>°(M) is the space of smooth functions &hand
xY(M) = x(M) the space of smooth vector fields &h Let

x*(M) = | 2 (m).
keN

We can define oiX*(M) a bracket [], called theSchouten—Nijenhuis bracket, graded
extension of the Lie bracket d&(M). Recall that, using the Koszul sign conventj@h this
Schouten—Nijenhuis bracket satisfies the following identities foPafd, R, respectively,
in XP(M), X4(M), X" (M):

[P, 0] = —(-1)P~ DD, P, (1)
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[P, Q ARl =[P, Q] A R+ (—1)""D1Q AP, R], )

(=0~ YIP [0, R + (-1« D¢"D[0. [R. P]]
+ (1) PeIR [P 0] = 0. 3

The last one is the so-callggaded Jacobi identity. In terms of this bracket, the condition
for IT to be Poisson is written], 7] = 0.
Because of thgraded Jacobi identity on X*(M), if Z is a vector field oM/, we have

0=[z. 1. 1] = 2[[Z, ], []

and so the 2-vector fielfl’ defined bylT’ = [Z, IT] verifies [[T, IT'] = 0.

Recall that two Poisson tensoff and 71 on M are saidcompatible if every linear
combination\olTg + A1111 is also Poisson; this fact is clearly equivalent to the condition
[ITo, IT1] = 0. For this reason, we will say thatzavector field P and ag-vector field
Q are compatible if [ P, Q] = 0. Then, the previous remark abalit = [Z, I1] leads to
the conclusion that théfinitesimal deformation IT' of the Poisson tensafl is always
compatible with/7. In particular, if [T’ is a Poisson tensor, we obtain dftwo compatible
Poisson tensors. So, we define the following definition.

Definition 2.1. If IT is a Poisson tensor ar#fla vector field so thafl’ = [Z, I1] is also
Poisson, therdT’ is said of deformation type andl( IT') is called a compatible Poisson
pair of deformation type.

However, in general]T’ = [Z, IT] is not Poisson and we will look at this problem in
Section3.

2.2. Poisson cohomology
Let (M, IT) a Poisson manifold. Consider fbre N, the application
d% xR M) — (), A — [T, A].

We have for all integek, the relationd;™ o ¢*. = 0 and so, we can define the following
cochains complex:

0wy 0 e 1g U y2g gy 4 43
and the cohomology spaces
HY (M) = Kerd’ /imdit (5)

with the convention Irrai,;1 = {0}. This cohomologyH};(M) is called thePoisson coho-
mology and was introduced by Lichnerowicz.

Among these cohomological spaces, the most interesting for our study is the second

one H,%(M), because, if it is trivial, the only 2-tensors compatible withare obtained
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by infinitesimal deformations aff, in particular, all compatible Poisson structures are of
deformation type.

In general, the calculation of the Poisson cohomology is very difficult; for some results
in this area, one can report fp0,11] and[15]. Nevertheless, ifT is non-degenerate (and
so M is symplectic), the Poisson cohomology Mfis isomorphic to the De-Rham one.
For a closed (i.e. compact boundaryless) symplectic manifold, it is impossible to have
H,%R(M) = {0} and soH127(M) # {0}; however, itis true for all local study because we can
suppose that we are on some open bakk#f endowed with the canonical symplectic form
o =Y dg; A dp;. Thus, in this case, all Poisson structures compatible with the canonical
onell,, are necessarily obtained by an infinitesimal deformatiofl pf

Another situation where the second Poisson cohomological space is trivial is provided by
semi-simple Lie algebras of compact type. Indeed, s the Lie algebra of a compact Lie
group andl7 the Lie—Poisson structure Gf, also known as th&ostant—Kirillov-Souriau
Poisson structure and defined fpg € C*°(G*) anda € G* by the bracket

{f gln(e) = (e, [df (), dg(e)]), (6)
we have for all integek (see[15, p. 69),

HY(G*) = HY(G) ® {Casimir functions of@*, IT)},

whereH*(G) is the cohomology of the Lie algebgaln particular, by classical results on this
last conomology, it7 is a semi-simple Lie algebra of compact type, we h&#%G) = (0}
and soHZ(G*) = {0}.

3. Bi-Hamiltonian systems and Poisson—Hamilton cohomology
3.1. The Yang—Baxter—Poisson equation

A deformed tensorll’ =[Z, IT] is Poisson if, and only if, [I’,17'] =0, i.e.
[[z, 1], [T'] = 0; this condition is equivalent — by the graded Jacobi identity and the com-
patibility of I7T andIT’ — to the equation

[[Z [z ], ] =0. (7)
So we can state the following proposition.
Proposition 3.1. Let (M, IT) a Poisson manifold and Z a vector field satisfying the con-
dition [[Z,[Z, II]], IT] = 0. Then (I1, I" := [Z, IT]) defines a compatible Poisson pair of
deformation type on M.
Remark 3.2.

(a) As we already said irBection 1 the relation(7) is the condition assumed by
Chavchanidz¢3] on non-Noether symmetries to get his results.
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(b) In his paper (cf. loc. cit), Chavchanidze compared(Ejto the classical Yang—Baxter
Equation. For this reason, we suggest to &atlg—Baxter—Poisson fields, solutions of

Eq. (7).
(c) Eq.(7)isin particular satisfied in the special case where

[z,[z,]] =0. (8)

Such a field will be called special Yang—Baxter—Poisson field.

The previous remarks lead to try to find Yang—Baxter—Poisson fields or special Yang—
Baxter—Poisson fields i.e. solutions of E(§.and (8) that we shall, respectively, name the
Yang—Baxter—Poisson Equation (shortly referred as (YBPE)) and the special Yang—Baxter—
Poisson equation (shortly referred as (SYBPE)), namely

[z,[z, M]],[T] =0 (YBPE)
and
[Z,[z,T]] =0 (SYBPE)

Let us begin with a remark; on a surface (i.e. a 2-manifold) all 2-vector fields are Poisson.
But, if M is a 2i-dimensional symplectic manifold, by Darboux theore¥his locally a
product ofn symplectic surfaces and so all fields dhwhich are adapted to this local
decomposition are solutions of (YBPE). In other wordsgif, (p1, g2, p2, - - -, qn, pn) are

local Darboux coordinates on an open Eefields of type

3 9

zZ= fz(ql, pl +gl(qz, Pi)—
api
1

are solutions of (YBPE) otv. For such a field, the compatible deformed Poisson structure
= [Z, IT] obtained onU is written as

) o~ 0 9
H’:[Z,H]: Zfl qlvpl +gz(ql,pl) a

opi’ = 9q; " o
B Z {f i) } LR [f 9 }
Pl a0y ) " apy T oq " [Toq T8 ap ap;
ofi g\ 8 9
__Z(fz gl)/\. (9)
dq;  Opi) Oqi  Op;

Another remark is the following one: let us search solutions of (SYBPE: fY
where Y is an infinitesimal automorphism dfl. In this case, becaus#,[[T] = 0, we
have—if we noteX ; the Hamiltonian vector field/, f] associated with Hamiltonian
function f
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0= [ LA M =~ fIAY] = —fILXAAY + (Y- )X/ AY

=(=fXyy+ - NX)AY. (10)
Moreover, the deformed Poisson structure is given by

I=-X;AY (11)

and so has a rank 0 or 2. Two particular cases appear when we look @tdgqamely
Y- f=0andY . f = f.Indeed, in this two cases we obtain solutions of (SYBPE) For
example, to find Poisson structures compatible with the canonicadlloae) ;_; aq A

Ipi
on R?", it suffices to choose a Hamiltonian vector figdfor instanceY = X, = ;‘31
a function f which verifiesY - f =0 or Y - f = f, i.e. with the given examplef =
f(q1, g2, p2, ..., qn, pn) in the first case and = e”1g(q1, g2, p2, . .., qn, pn) in the sec-
ond one, and to deforn by means of the fiel& = fY according to the formulél1).
Now, if we haven independent automorphisni, ..., Y, of IT andn functionally inde-
pendent first integralgy, .. ., f, for the fieldsYy, ..., Y,, with Yy, ..., Y, Xp, ..., Xy,
independent, then the deformed structlife= [Z, IT] whereZ = f1Y1 +---+ f, Yy, is
a non-degenerate Poisson structure, compatible WitH-or example, we are in such
a situation when we have a completely integrable Hamiltonian system: by Jacobi-Lie—
Caratheodory theoref8], if ( f1, ..., f,)is aninvolutive family, there are locally, functions
g1, ..., & Such thatfi, ..., fu, g1, ..., g, are canonical coordinates and so we can take
Y1=Xgp ooy Yuo1 = Xg,, YVn = Xg,.

3.2. The Yang—Baxter—Poisson moduli space

Recall first the classical definition oftd-Hamiltonian system.

Definition 3.3. A Hamiltonian system/, I1, H) is said to admit a bi-Hamiltonian formu-
lation if there is a bivectofI’ satisfying the three following conditions:

(a) [IT', I'] = 0 (Poisson condition)
(b) [T, IT'] = 0 (compatibility condition)
(c) [[H, IT], '] = 0 (bi-Hamiltonian condition)

In this case we will call ¢, T, IT', H) a bi-Hamiltonian system.

Remark 3.4. The condition (c) in the previous definition says that the Hamiltonian vector
field Xy := [H, IT] is an infinitesimal automorphism d@i’; among these automorphisms,
we find Hamiltonian vector fields relatively #@’, and locally all automorphisms are such
Hamiltonian fields, i.e.ff, IT] = [H’, IT'] for some functiond’. This fact justifies the word
“bi-Hamiltonian” used in this definition.

We can also remark that using the graded Jacobi identity for Schouten—Nijenhuis bracket
and the condition (b), the condition (c) gives immediately that the Hamiltonian vector field
[H, IT] is an infinitesimal automorphism df.
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Definition 3.5. A bi-Hamiltonian formulation for the systeni| I1, H) will be called of
deformation type if7’ is obtained by deformation @7 i.e. IT’ = [Z, IT] for a suitable field
Z.

Proposition 3.6. A Hamiltonian system (M, I1, H) admits a bi-Hamiltonian formulation of
deformation type if, and only if, there is a vector field Z € X(M) satisfying the two following
conditions:

() [[Z.[Z, ], 1] = 0 (YBPE)
(i) [ Z,[H ), [T] =0, ie [Z, XH] is an infinitesimal automorphism of I1. We refer to
this condition as (PHE) (for Poisson—Hamilton equation).

In this case the second Poisson structure IT' of Definition 3.3is given by IT' = [Z, I].

Proof. We have already seen that the condition (i), i.e. the (YBPE) is a necessary and
sufficient condition to haveél’ := [Z, IT] Poisson. The condition of compatibility is in the
case of a deformation automatically satisfied. Now,[#®r.= [Z, IT], the condition (c) of
Definition 3.3is written [Xn, [Z, IT]] = 0 and so using the graded Jacobi identity for the
Schouten—Nijenhuis bracket and the fact thgtis an infinitesimal automorphism at,

we see immediately that it is equivalent to the condition (i}

Remark 3.7. In [3], Chavchanidze definesmn-Noether symmetry as a fieldZ so that
[Z, Xy] = 0and [Z, IT] # 0. Such afield is a trivial solution of (PHE). We will reconsider
largely this concept in Sectich

It is so natural to define, for a Hamiltonian system, (7, H), the following set:
S={(zexYM),[[2 [z O]),M]=0 and [Z, Xu], [1] =0}
It is the set of solutions of the Yang—Baxter—Poisson and Poisson—Hamilton equations and
can be called the space of bi-Hamiltonian systems of deformation type associated with
(M, I, H).
Proposition 3.8. If Z is a vector field which satisfies the two equations

[Z,[2z 0], 0 =0 and [[Z Xu], ] =0

then, for all infinitesimal automorphism Y of I1, the field Z + Y is again a solution of these
two equations.

Proof. For the first one, we have,

(Z+Y[z+Y.Oll Ol =[Z+Y.[z 0N 0 =Y. 1], 1]
=[¥. [, O] + [T, [11, Y]] =0
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the two last equalities resulting, respectively, from the graded Jacobi identity, the compat-
ibility of IT with the deformed tensafl’ = [Z, IT] and the fact that is an infinitesimal
automorphism of 7.

For the second one, it results from the classical fact thax ;] is a Hamiltonian vector
field and so is d7-automorphism, precisely[ Xy] = Xy.xy. O

Obviously the relation- defined on¥!(M) by
vz, 7 exim), Z~7 &[z2-27,01=0

is an equivalence relation and because of the previous propositigne if, all field z’
equivalent taZ is again inS which it allows to consider the well-defined spage= S/~
that we will call theYang—Baxter—Poisson moduli space.

3.3. Poisson—Hamilton equation and cohomology

In previous section we have seen the classical Poisson cohomology, which is the good
theoretical framework to study deformations of Poisson structures. Now, we want to intro-
duce anew cohomology which is adapted to the bi-Hamiltonian systems of deformation type
and more precisely to the condition (i) Bfoposition 3.6This condition [[Z, Xy], IT] =
0 has already been called thBoisson—Hamilton equation, shortly referred as
(PHE).

Let fork € N and (M, I1, H) a Hamiltonian system:

sk xky — ), A+ [IT1,[Xn, A]]. (12)

Because of the graded Jacobi identity for the Schouten—Nijenhuis bracket aixg,;the
invariance off1, we can deduce the following easy lemma.

Lemma 3.9. Forall k € N, for all A € X*(M), we have
85 (A) = dN[Xp, A] = [Xn, di5 Al

where d;‘-, indicates the cobord operator of the Poisson cohomology associated with I1.

Using this lemma, we obtain immediately that for/ak N,
slosk =0
and so, we obtain a new cohomology associated with the cochains complex

0 1
817 817

x0(m) = xH ) 3 x3(m) 3_%1 BM) — -

that we will note Hy; (M) and call thePoisson—Hamilton cohomology. In terms of this
cohomology, the space of solutions of the Poisson—Hamilton equation (PH E)éi}:, Keut
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an element’ of Im 897 satisfies for some functiofi € C*°(M),

Y = [IT,[Xn, fll = Xu,

thus is Hamiltonian, and so leads to a trivial deformatioroflt results from these ob-
servations that the space of “interesting” solutions of (PHH)I}@H(M). Obviously this
cohomology depends strongly on the functiinin the particular case where there is a
non-Noether symmetr¥ of Xy, the class of this symmetry defines a non-trivial element of
Hpy (M),

We can also remark, using the previous lemma, that the two cobord opeiatasd
37 satisfy the following identities:

dgodg=686godg=0. (13)
In particular,
0y Ay AL o dEeL o
XM STxX (M) ST x M) ST X (M) — - - (14)

defines a bicomplepd,5], i.e. we have, with simplified notations:
drpodpg =0, Sgodg =0, dréng +6éndn = 0.

Itis important to note that, the cobord operator for Poisson—Hamilton cohomology is not
a differential operator of order one. So, we are only in an algebraic situation of bicomplex
and there is no Fdicher operator relying the two cobord operators of the bicomplex.

4. Deformations and action-angle coordinates
4.1. Arnold-Liouville systems

Let (M, I1, H) a Hamiltonian system whet@ has a maximal rank and so is associated
with a symplectic formw. This system is said completely integrable in the sense of Arnold—
Liouville — or anArnold-Liouville system — if there is an involutive family of functionally
independent constants of motigh, . . ., f,, wheren = dim M/2, so that the fibers of the
application

F:M— R x> (fi(x), ..., fu(x))

are compact sets. In this situation we know thaf; i§ a connected component of a fiber,
thenT is an-dimensional torus; moreover, there is a tubular neighbourli»ofiT in M and

a Poisson isomorphism betwegnandU x T" whereU is an open set dR” andU x T"

is endowed with the canonical Poisson structli@n= Y ;_; TZ, A % where we note
q1,...,qn, 01, ..., 0, coordinates on the produét x T". These coordinates are called
action-angle coordinates and the functiongf and f1, ..., f, depend only ony, ..., g,
(see for examplg9]). These classical results show that the model of Arnold—Liouville
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integrable Hamiltonian system around a toruslisx T", I1¢an, H(g)); we say that the
Hamiltonian functiorH is non-degenerate if its Hessian matrix has a maximal rank 6h
This generic condition implies that, the only first integralsXef are basic functions for
the fibrationU x T" — U given by the first projection, i.e. are functionsqgf . . ., g,.
In the following, when we will sayArnold—Liouville system, we will refer to the system
(U x T", Mcan, H(q))-

The Poisson cohomology of such a system (of its manifold) verifies

HZ(U x T") ~ H3R(U x T") ~ (HZR(T") ® H3R(U)) ® (HER(T") ® HEr(U))
® (H3R(T") ® H3R(U)) ~ H3Z&(T")

because of the isomorphism between the Poisson and De-Rham cohomologies in the sym-
plectic case, and the triviality of the De-Rham cohomology of an open b&'oNow,
because @ A df;);<; is a basis forH%R(T"), we get by symplectic duality the basis
(% A %) of HZ(U x T"). So, if IT' is a 2-tensor compatible witiT, there are a field

t i<j

Z and some real constants so that

d 0
o =1z, + ci— A —.
; Yog; " 0q;

4.2. Deformation with a non-Noether symmetry

In a general way, a symmetry of a dynamical system X(x) is a vector fieldZ sat-
isfying [Z, X] = 0. In the Hamiltonian framework, ifM, IT) is a Poisson manifold and
H a smooth function o/ giving a Hamiltonian vector fiel&y, we have already seen
in previous section that Chavchanidid defined a non-Noether symmetry as a field
Z verifying conditions ¥, Xy] = 0 and [Z, I1] # 0. In this situation, he proved several
results — in the case whe@ has maximal rank — about the existence of an involu-
tive family of first integrals forXy, about the existence of a bi-Hamiltonian formula-
tion and the existence of a #licher—Nijenhuis operator and so on. All these results are
clear in the light of the previous section and classical results on bi-Hamiltonian systems
[8].

As we have already seen, the infinitesimal deformation of a Poisson téhbgrthe
means of a fiel&, namelyll’ = [Z, 1], verifies [IT, IT'] = 0 and so, in the case whefE
is Poisson, we obtain a pair of compatible Poisson structures. Morea¥és,afsymmetry,
it is clear that/T’ is Xy-invariant and the given Hamiltonian system has a bi-Hamiltonian
formulation. Thus, in the case whefé has maximal rank, the (1)-tensor field relying
the two structures can be used to obtain an involutive family of constants of motion. In
this case, perhaps we will obtain the complete integrability of the Hamiltonian system
(we have already said in the introduction the double point of view about it: we can try to
prove complete integrability with this method or more realistic, we can try to see if known
Poisson-commuting first integrals can appear as eigenvalues of the associated recursion
operator).
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Now we want to prove that the notion of non-Noether symmetry is not relevant for a
large class of Arnold—Liouville systems because by its means, the involutive family of first
integrals mentioned above contains only constants functions.

In the context of action-angle coordinates, we have the following rEsalk

Lemma4.1. For a non-degenerate Arnold—Liouville system, a field Z is a symmetry of XH,
i.e.[Z, Xu] = Oif, and only if, Z is written as

“ B
Z= (q)—
D> _aila)gy
i=1
We deduce the following proposition.

Proposition 4.2. For a non-degenerate Arnold—Liouville system, the deformation of the
Poisson structure by means of a (non-Noether) symmetry gives a bi-Hamiltonian structure
whose recursion operator has a trivial spectrum.

Proof. Indeed, it results from the previous lemma that the bivector]] has the form

9 "\ da; O 9
[z, 1] = Z“’(‘f)ae 50, =-Y X2 2
qj 39]' i1 qu 39,' 89]'

and so, if [Z, IT] is a Poisson structure, the,(I)-tensor field relying the two compatible
Poisson structures has a trivial spectruni]

Consequently, if a Hamiltonian system is completely integrable in the sense of Arnold—
Liouville, with a non-degenerate Hamiltonian, it is impossible to prove its integrability by
means of a bi-Hamiltonian formulation based upon a deformation of the initial Poisson
structure by a non-Noether symmetry. Thus, deformations by non-Noether symmetries
cannot bring any explanation to the Arnold—Liouville integrability (at least wkers
non-degenerate).

4.3. Mastersymmetries and deformations

Recall that a mastersymmetry of a Hamiltonian system is a fiéldatisfying
[([Z, Xu], Xu] =0and £, Xu] # 0.

In [14], Smirnov showed (by applyingemma 4.1to [Z, Xy]) that, if (M = U x
T", IT, H) is non-degenerate, the conditiorZ[[Xy], Xn] = O is satisfied if, and only if,
the fieldZ is written as

" 9 " 9
Z=Zai(q)8fei+zbi(q)8fqi (15)
=1 i=1

and so characterized mastersymmetries in this situation. Using this fact and some results
obtained in1,2] we can prove the following theorem.
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Theorem 4.3. Let (M = U x T", I1, H) be a non-degenerate Arnold—Liouville system. If
Z is a field and I1' = [Z, IT] is a (compatible) Xy-invariant Poisson structure (and so
provides a bi-Hamiltonian formulation to the system) then, modulo a Hamiltonian vector
field, Z is written as

n n
9 3
7= E (q)— § bi(g)—.
iZlch(q)39i4—i=l z(q)aqi

In this case, Zmust be a mastersymmetry if the spectrum of the associated recursion operator
has a non-trivial spectrum.

Proof. Let
Z Zal(q’ 9) +Z l(q’ 9)

be a general field. We want to prove thatlif = [Z, IT] is a Xy-invariant compatible
Poisson structure then, modulo an infinitesimal automorphism, die coefficients; and
b; depend only omg. A straightforward calculation gives

ooy (Mt D s (T 0
86] j 36],' 39,‘ a0 j iz 39,' a0 j 3q,' 36] j

i<j

—Z( %)HAB. (16)
dg;  06; ) 9q; 06

For some (great) constakf we are sure thafly := kIT + IT’" has a maximal rank and

so defines a symplectic formy,. Moreover, we have alsd{y, I1] = 0, soll; andIT are
compatible. From a symplectic point of view, we have two compatible symplectic forms
wcan andwy, in the sense where the,()-tensor field/ defined by the relation available
for all vector fieldsX andY, wx(X, Y) = w(JX, Y), has a vanishing Nijenhuis torsion and
of coursewy is Xp-invariant. So, according to a study done in the context of symplectic
forms[1,2], we know that, in this situation, the coefficientsof are functions of only
coordinatesys, . .., g, and that the fibratiod/ x T" — U is Lagrangian, i.ew; has no
term in ; A do;. It results that/T, and also/I’ has coefficients which depend only on
coordinates; and has no term i@% A %j. So we have,

oa; oa; ]

Vi<, 20 e = fij(9), (17)
qj
viej am:’ (18)
% 96,
.. 0b; da;
Vi, j, — + L = giq). (19)

Bq j 391‘
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The second of these relations means that for eachdixthé 1-forme := > b; d; is closed
and thus, according to the De-Rham cohomology of the torus, there is a fuhttiodn
functionsc;(g) so that

a=0F+ Y cilg)do.
wheredy F is the differential ofF as a function ob (g is constant). Thus we have for all

bi(g.0) = Ey ci(q)- (20)

9
Now consider the fiel&’ = Z + X whose coefficients are, with obvious notations,

IF OF
a;=a+—, by =bi — —.
3g; 30;
We have,
da, da; =~ 0°F b;  PF dc;
39 89 + — 3 39] gﬂ( ) — o4 — 4 86]1'39] —gjt(CI) 3qi (9)-

Thus on each torus, the functiomsare affine functions, so are constants and finellly-
d}(g). We have also,

b, b  PF

30; 00, 30;00;

so b} = bl(g). It results from these calculations that has the announced form. Now,
according tdProposition 4.2if the spectrum of the recursion operator associated with this
bi-Hamiltonian system is interesting, in particular non-triviglcannot be a symmetry but

a mastersymmetry. [

Remark 4.4. The modification of a given fiel& by a Hamiltonian does not change

the deformed structurél’ and the associated recursion operator. So, the previous re-
sult joined to the initial remarks about the Poisson cohomology of T" show that,

in the case of a non-degenerate Arnold—Liouville system, the only bi-Hamiltonian struc-
tures — with a non-trivial spectrum — are obtained by deformation of the initial Poisson
tensor by means of a mastersymmetry. So, only mastersymmetries are interesting in the
Arnold—Liouville context; this fact can be brought closer to that of Smirfio}] who
showed that for an Arnold—Liouville system the only generatoo§ degree, in the sense
where

LA, z=0 and LY 'Z#0

are symmetries and mastersymmetrieski-.1 or 2). These two results show the essential
role of mastersymmetries.
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5. Some examples of deformation

5.1. The Toda lattice

The Toda lattice is a system ofparticles on a line; i1, . . ., ¢, are positions of these
particlesangy = g1, . .., pn = g, itis a Hamiltonian system on the phase spaéewith
coordinatesds, ..., g, p1, . - ., pn) €ndowed with the canonical Poisson structure

IS
8% 8[)1

and the Hamiltonian functioH associated with the system is
1 n n—1
=3 Z P2+ Z 2@i—air1)
i=1 i=1

This system appears as a bi-Hamiltonian system with the following second Poisson
structure6]:

I = Z 2 fi—aqiv1) _Z

ZP I e A
i=1 i=1 l‘” 8p’ 2i<' g

8pl+l 3171 ; 8‘1,/

We know from the previous sections that the bived@ris necessarily a deformation of
I,i.e.IT" = [Z, IT] for a suitable fieldZ which is uniquely defined modulo a Hamiltonian
field. We can take foZ the following:

Gi—a )7 1 2 0 1 9
Z = Zezq qi+1 +Z zig;plaqj

In order to obtain this field, it suffices to use symplectic duality provided Byand work
with differential forms: a suitable field appears in this new context as a 1-farmerifying
da = o', wherew' is the 2-form corresponding @ by means of this duality.

5.2. The relativistic Toda lattice

For the relativistic Toda lattice, we have again

= Z—A—

dq;  Opi

but the Hamiltonian functio#/ associated with the system is now

n
H = Z eli—qi+1FPi 4 @li
i=1
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Here a bi-Hamiltonian formulation is provid¢#i3] by the Poisson bivector

n—1 9 9 n 9
m=Yer—al—+> — |+,
i=1 0qi i S50

where

n—1 n
7’ = Ze(qi*fiHl*PiJrl) <3 + 9 > A 9 + Z i

p} i 9git1 Ipiv1 L, 04;

d "9
_ lgi—git1—pit1) A Z 2
pit+1 ) g j

We can give the following satisfyingIT’ = [Z, IT],

n—1 P n P n—1 n 9
Z= Z el | —— Z — | = Z l4i—git1—piv1) 9
p} api urnt g j -1 opit1 farnd) g j

5.3. The Euler equation

Using a symmetric matrid, we can obtain on the Lie algebra ah(a new Lie bracket
givenby M, N4 := MAN — NAM. Such a bracket defines a Poisson structure on the dual
space so()* of sof:). By means of the symmetric bilinear for(n) defined by(M, N) :=
Tr(MN), we can identify the Lie algebra sg(with its dual space saf*. Then, we get
a new Poisson brackét 4 on sog). In the case wherd = I, this Poisson structure is
the Kirillov—Kostant—Souriau Poisson structure;{let the corresponding bracket. [h2],
the authors affirm that the Poisson brack&{, } 4 is obtained by deformation from }.
Because fon > 3, so@) is a semi-simple Lie algebra of compact type, this result is not
surprising according to the end of Sect@2. Moreover in[12], the authors give the field
Z(M) := AM + MA as a suitable field allowing this deformation. We now prove this fact.

Indeed, the flow of the field is given by, (M) = €4 M €4. For P € so(), let us define
on sof) the real functionfp,

fp(M) := Tr(MP).

If P, Q andM belong to saf), we have
{fpodi foodlg- (M) = -Tre " Me e’ P&t &0 ).

After some simplifications, we get,

{fpodi, foodl@—i(M)) = —Tr(MPE**Q — MQ 4 P).
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By differentiation at = 0 of this last expression, we obtain

d

@ o{fP ° ¢r, fo © ¢} (d-1(M)) = 2Tt (MPAQ — MQAP) = —2{fp, fo}a(M)

and so the announced result.
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